handshaking$33674$ - traduzione in greco
Diclib.com
Dizionario ChatGPT
Inserisci una parola o una frase in qualsiasi lingua 👆
Lingua:

Traduzione e analisi delle parole tramite l'intelligenza artificiale ChatGPT

In questa pagina puoi ottenere un'analisi dettagliata di una parola o frase, prodotta utilizzando la migliore tecnologia di intelligenza artificiale fino ad oggi:

  • come viene usata la parola
  • frequenza di utilizzo
  • è usato più spesso nel discorso orale o scritto
  • opzioni di traduzione delle parole
  • esempi di utilizzo (varie frasi con traduzione)
  • etimologia

handshaking$33674$ - traduzione in greco

LEMMA THAT EVERY NODE-LINK GRAPH HAS AN EVEN NUMBER OF ODD-DEGREE VERTICES
Handshaking Lemma; Degree sum formula; Handshake lemma; Odd vertex; Odd node; Handshaking theorem
  • 2 + 3 + 2 + 3 + 3 + 1 {{=}} 14}}, twice the number of edges.
  • An infinite graph with only one odd vertex
  • The [[mountain climbing problem]]
  • A Sperner coloring of a triangulated triangle, shaded to highlight the three small triangles that have all three vertex colors

handshaking      
n. χειραψία

Definizione

handshake
(handshakes)
If you give someone a handshake, you take their right hand with your own right hand and hold it firmly or move it up and down, as a sign of greeting or to show that you have agreed about something such as a business deal.
N-COUNT

Wikipedia

Handshaking lemma

In graph theory, a branch of mathematics, the handshaking lemma is the statement that, in every finite undirected graph, the number of vertices that touch an odd number of edges is even. For example, if there is a party of people who shake hands, the number of people who shake an odd number of other people's hands is even. The handshaking lemma is a consequence of the degree sum formula, also sometimes called the handshaking lemma, according to which the sum of the degrees (the numbers of times each vertex is touched) equals twice the number of edges in the graph. Both results were proven by Leonhard Euler (1736) in his famous paper on the Seven Bridges of Königsberg that began the study of graph theory.

Beyond the Seven Bridges of Königsberg Problem, which subsequently formalized Eulerian Tours, other applications of the degree sum formula include proofs of certain combinatorial structures. For example, in the proofs of Sperner's lemma and the mountain climbing problem the geometric properties of the formula commonly arise. The complexity class PPA encapsulates the difficulty of finding a second odd vertex, given one such vertex in a large implicitly-defined graph.